Step of Proof: assert_of_le_int
9,38
postcript
pdf
Inference at
*
1
1
0
I
of proof for Lemma
assert
of
le
int
:
1.
x
:
2.
y
:
(
(
y
<z
x
))
(
(
y
<
x
))
latex
by PERMUTE{1:n, 2:n, 2:n, 2:n, 3:n, 4:n, 5:n, 6:n, 7:n, 8:n}
latex
1
: .....wf..... NILNIL
1:
(
(
y
<z
x
))
2
: .....wf..... NILNIL
2:
(
(
y
<
x
))
3
: .....wf..... NILNIL
3:
(
y
<z
x
)
4
: .....wf..... NILNIL
4:
(
y
<
x
)
5
: .....wf..... NILNIL
5:
y
6
: .....wf..... NILNIL
6:
x
7
: .....wf..... NILNIL
7:
(
(
y
<
x
)) = (
(
y
<
x
))
8
:
8:
(
(
y
<
x
))
(
(
y
<
x
))
.
Definitions
t
T
,
x
:
A
B
(
x
)
,
Type
,
f
(
a
)
,
s
=
t
,
x
:
A
B
(
x
)
,
,
a
<
b
,
i
<z
j
,
b
,
A
,
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
Q
,
P
Q
,
P
Q
Lemmas
assert
of
lt
int
,
not
functionality
wrt
iff
,
iff
functionality
wrt
iff
origin